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Probing Edge State Conductance in Ultra-Thin Topological
Insulator Films

Arthur Leis, Michael Schleenvoigt, Kristof Moors, Helmut Soltner, Vasily Cherepanov,
Peter Schüffelgen, Gregor Mussler, Detlev Grützmacher, Bert Voigtländer,* Felix Lüpke,
and F. Stefan Tautz

Quantum spin Hall (QSH) insulators have unique electronic properties,
comprising a band gap in their 2D interior and 1D spin-polarized edge states
in which current flows ballistically. In scanning tunneling microscopy (STM),
the edge states manifest themselves as an enhanced local density of states
(LDOS). However, there is a significant research gap between the observation
of edge states in nanoscale spectroscopy, and the detection of ballistic
transport in edge channels which typically relies on transport experiments
with microscale lithographic contacts. Here, few-layer films of the 3D
topological insulator (BixSb1−x)2Te3 are studied, for which a topological
transition to a 2D topological QSH insulator phase has been proposed.
Indeed, an edge state in the LDOS is observed within the band gap. Yet, in
nanoscale transport experiments with a four-tip STM, two-quintuple-layer
films do not exhibit a ballistic conductance in the edge channels and thus no
QSH edge states. This demonstrates that the detection of edge states in
spectroscopy can be misleading with regard to the identification of a QSH
phase. In contrast, nanoscale multi-tip transport experiments are a robust
method for effectively pinpointing ballistic edge channels, as opposed to
trivial edge states, in quantum materials.

1. Introduction

A quantum spin Hall (QSH) phase is characterized by a band
gap in its 2D interior and by 1D, counter-propagating, and
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spin-polarized helical edge states.[1,2] In-
ducing superconductivity in QSH edge
states provides routes to engineering
topological superconductivity, with poten-
tial applications in topological quantum
computing.[3,4] So far, the QSH phase has
been realized, for example, in semicon-
ductor quantum wells[5] and monolayer
transition metal dichalcogenides.[6–8] The
unequivocal identification of the QSH
phase in a given material requires the con-
firmation of two experimental signatures:
an electronic band gap in the bands of the
2D interior, and spin-polarized helical edge
states with a ballistic conductance around
the perimeter of the topological phase, that
is, at the boundaries to topologically trivial
matter or vacuum.
Although local probes, such as scan-

ning tunneling spectroscopy (STS), are
powerful tools to characterize the bulk
band gap and the LDOS of possible edge
states,[9] such measurements cannot pro-
vide sufficient evidence for a QSH phase.
The LDOS of an edge state is at most
a necessary, but certainly not a sufficient

condition for its existence. In contrast, a ballistic edge conductiv-
ity constitutes a much more robust signature of a QSH phase,
if it can be measured reliably. The latter is indeed challenging,
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Figure 1. Schematic sketch of the sample layout and the principle of non-invasive nanoscale transport measurements with freely positionable contacts.
a) Due to the shadow mask technique employed during the MBE growth of the sample, the boundary region of the TI film forms a wedge, consisting of
terraces terminated by single-layer step edges. The positioning of the tips of the four-tip STM parallel or perpendicular to the step edges and their use
as electrical probes allows transport measurements involving possible edge states. Since the 2D sheet conductivities 𝜎2D of each terrace are known, the
contribution of the edge states to the overall charge transport can be identified. b) Terrace sheet conductivities 𝜎2D of (Bi0.16Sb0.84)2Te3 thin films as a
function of thickness, measured in quintuple layers (QL). Data are reproduced from reference.[22] c) Schematic band structure of a 2D TI film. Due to
the interaction between top and bottom TSS of the underlying 3D TI, a band gap forms in the two-dimensional interior of the film; corresponding states
are shown in blue. At the edges of the 2D TI, topologically protected QSH edge states may form (purple). If the Fermi level is located in the gap (EF),
the transport in them is expected to be ballistic, while the film interior shows a comparatively low sheet conductivity 𝜎2D. If the Fermi level is located
outside the gap (E′F), 𝜎2D is larger and inter-band scattering may destroy the ballistic conductivity in the QSH edge states.

because ultra-thin films are difficult to prepare with well-defined
edges, and moreover they are sensitive to degradation in ambi-
ent conditions and lithographic processing. These adversities can
distort or even mask the QSH effect, especially if the transport
measurements provide no information on the spatial distribution
of the electrical current—a common disadvantage of standard
electrical transport measurements with lithographic contacts. A
clearcut proof of a QSH phase in real systems is therefore facil-
itated considerably by a combination of nanoscale imaging, lo-
cal spectroscopy, and local transport characterization, ideally un-
der in situ conditions. This unique portfolio is only offered by
multi-tip scanning tunneling microscopy (STM), in which each
tip serves as a mobile electrical probe,[10] as shown in Figure 1a.

Whereas the QSH phase was first observed in HgTe quantum
wells,[5] the weakly coupled nature of the layered van der Waals
material (BixSb1−x)2Te3 (BST) allows direct access to the topo-
logical surface states for studying their detailed properties, and
BST also allows a more flexible integration of the QSH phase
into devices with other materials. Here, we use multi-tip STM to
study edge state conductances in few-layer BST films. In the bulk
limit, BST is a 3D topological insulator (TI) with 2D topological
surface states (TSS) and a bulk band gap of about 300 meV.[11–14]

However, when thinned down to a few quintuple layers (QL),
the TSS at the top and bottom surfaces of the film begin to
hybridize, resulting in a topological transition to either a QSH or
a trivial insulator, depending on the material composition.[15–19]
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Both topological phase transitions are accompanied by the
opening of a gap at the TSS Dirac points, but in contrast to
the topologically trivial phase, the QSH phase guarantees the
presence of topological edge states and corresponding ballistic
conductance channels (Figure 1c).
The opening of a gap at the TSS Dirac point of BST in the few-

QL limit was observed by both by photoemission spectroscopy
and STS.[9,20,21] Moreover, four-point resistance measurements
on individual terraces of a BST sample showed an approximately
exponential drop of the sheet conductivity with decreasing film
thickness,[22] as displayed in Figure 1b. But the observation of
the hallmark of a QSH phase, that is, a ballistic conductance
in a topological edge state, has not yet been confirmed in this
material system. Due to the required lithographic patterning of
electrical contacts, which results in the immediate degradation
of the ultra-thin films,[23] such measurements are very challeng-
ing in the standard methodology of transport experiments. With
our multi-tip STM approach, however, we circumvent this prob-
lem elegantly and are able to access the electrical properties of the
pristine edge states in situ, without the need for lithographic pro-
cessing.
We have chosen a Sb-rich ternary BST compound,

(Bi0.16Sb0.84)2Te3, for our search of highly conductive edge
states, because for this stoichiometry, the Fermi level is located
within the bulk band gap.[22] It is well-known that the potential
occurrence of a QSH phase in ultra-thin films depends both
on the composition and the thickness of the film. For binary
BST compounds, theoretical calculations predicted that only
the 2 QL Bi2Te3 film supports a QSH phase,[19] while other
calculations predicted 3 QL Sb2Te3 to form a QSH phase under
specific conditions.[17] Also, some experimental indication of a
QSH phase in 3 QL Sb2Te3 was found.

[21] In our experiments,
we confirm that 2 QL and 3 QL films with the composition
(Bi0.16Sb0.84)2Te3 do not exhibit highly conductive edge states.
For 2 QL, we conclude that the film does not support a QSH
phase. Notably, the absence of conducting edge states in our
transport measurements occurs in spite of the spectroscopic
identification of edge states, which therefore must be assigned to
trivial ones, not exhibiting ballistic transport. This illustrates the
value of our generic approach to the unambiguous pinpointing
of topological edge states in quantummaterials, although for the
specific sample under study no such states could be identified.

2. Experiments

(Bi0.16Sb0.84)2Te3 thin films were grown on silicon-on-insulator
(SOI) substrates by molecular beam epitaxy (MBE), using the
same process as reported earlier.[22] The use of SOI substrates
with a thin top layer of intrinsic Si reduces the substrate sheet
conductivity to about 2 nS□−1. To achieve a TI film with bound-
aries on the SOI substrate without the need of ex situ processing,
growth was conducted through a removable shadowmask. In the
boundary region of the latter, the TI film formed awedge inwhich
the thickness decreases in single-QL steps from themaximum of
12 QL (1QL ≈ 1 nm) down to the bare Si(111) template layer, as
indicated in Figure 1a. Regarding the stoichiometry at boundary
region of the film, the rotation of the sample plus the mask dur-
ing growth and themobility of the deposited materials maintains

Figure 2. Topography of the (Bi0.16Sb0.84)2Te3 film and exemplary mea-
surement configuration. a) A large overview STM scan is performed with
one of the tips to map the topography of the TI film close to its boundary.
The image shows single-QL steps (cyan dashed lines), thus revealing the
wedge-shaped structure of the film down to the Si(111) substrate. Film
thicknesses are labeled above the map. The overview scan serves as a ref-
erencemap to place all four tips (white symbols) in the vicinity of a selected
step edge (here: 1 QL / 2 QL). The blue square indicates the image frame
of Figure 4a. b) Optical microscope image of the final tip configuration.
The area of the overview STM scan is indicated by the green rectangle.

a constant stoichiometry. For instance, the sample rotation re-
moves penumbra effects which could otherwise arise from differ-
ent evaporators or due to the finite height of the mask. After the
growth, vacuum transfer with p ≤ 1 × 10−9 mbar was carried out
to load the sample into the room temperature four-tip STM (p ≤
4 × 10−10 mbar). The vacuum transfer, as well as the fact that elec-
trical transport measurements using a four-tip STM do not re-
quire any additional sample processing beyond the growth, both
preserve the pristine TI film, thus avoiding any influence of passi-
vation or lithography steps on the charge transport properties.[23]

After the electrical measurements, ex situ Rutherford backscat-
tering measurements were performed to determine the precise
atomic composition of the ternary compound.
All STM, STS and nanoscale four-point transport measure-

ments reported here were performed in the Jülich room-
temperature multi-tip STM.[24] Topographic STM images and
dI∕dV -images were recorded in constant-current mode with the
bias voltage Vb applied to the sample. The spectroscopic dI∕dV
signal was acquired using standard lock-in techniques with a
modulation frequency f = 320 Hz and amplitude Vmod = 30 mV.
To first order, dI∕dV(E) is proportional to the LDOS at the local
probe position and at energy E = eVb with respect to the Fermi
level of the sample.[25] Electrochemically etched tungsten wires
were used as STM tips.
To perform electrical four-pointmeasurements with themulti-

tip STM, the four tips were brought to the desired positions on
the sample surface by scanning the region of interest in tunnel-
ing contact. They were then lowered from the tunneling regime
into contact with the sample surface, thereby establishing elec-
trical point contacts to the TI film.[26] After the electrical mea-
surements, the tips were lifted from the sample surface and sub-
sequent topography scans showed that the contact points of the
tips are discernible only as small spots which do not influence
the measured four-point resistance significantly (see Supporting
Information).
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In the present experiments, placing the tips close to the step
edges of theMBE-grownwedge-like film is a particular challenge.
To meet the required level of precision in placing the tips at a
selected step edge, we employed a positioning technique rely-
ing on successive STM scans performed with all tips,[26] which
is discussed in exhaustive detail in ref. [27]. In a first step, we
used the optical microscope to position the tips roughly above
the boundary region (Figure 2b). Then, we approached the tips
into the tunneling regime and measured overview scans of the
topography of the TI film. Figure 2a shows such a large overview
scan performed with one of the tips in the boundary region of
the film, indicating the approximate extent of the terraces by the
dashed blue lines. After all tips had been moved into the mapped
boundary region (green rectangle in Figure 2b), using optical
microscope imaging, small-scale STM scans were recorded with
each tip to find topographic features that were also seen in the
large overview scan. Once a topographic feature had been recog-
nized, the position of the corresponding scanning tip was known.
Further adjustments of each tip position were then achieved by
fine lateral movement using piezoelectric control in tunneling
contact.[27] In this manner, all tips were placed in a desired posi-
tion, as shown exemplary by thewhite symbols in Figure 2a.More
details on the accuracy of the determination of the tip distances
can be found in Supporting Information.
In the ensuing transport experiment, the outer two STM

tips injected a charge current, while the inner tips probed the
resulting electrochemical potential. The four-point resistance
for a given tip arrangement was measured by recording the
four-probe I–V characteristics, with currents of up to 10 µA. In
all measurements, only the position of one of the voltage-probing
tips was varied, while the other tips were kept in fixed locations.

3. Results and Discussion

3.1. Spectroscopic Evidence for Edge States

Edge states typically show an increased LDOS which can be de-
tected in STMandSTS. For the example of topologically protected
edge states, this was demonstrated, for example, in refs. [28–32].
Figure 3a shows an STM topography image of a region close to
a step edge between a 3 QL and a 4 QL film, and in Figure 3b–i,
corresponding constant-energy dI∕dV maps are displayed. At en-
ergies larger than 220 meV, the maps convey a uniform density
of states. Specifically, they exhibit no edge features. Yet, for ener-
gies below 220 meV, a distinct LDOS signal along the step edges
is observed. Since it occurs at the same magnitude regardless of
whether the scanning tip ascends to the 4 QL terrace or descends
to the 3 QL terrace (both types of tip trajectories are present in
Figure 3), we can rule out the possibility that the dI∕dV signal at
the step edge is due to a feedback artifact.
From angle-resolved photoemission spectroscopy (ARPES),

it is known that the Fermi level at the top surface of thicker
(Bi0.16Sb0.84)2Te3 films is located 50 meV above the TSS Dirac
point and about 200 meV below the bulk conduction band, as
estimated by interpolation of ARPES data in ref. [22] and refs.
[21] and [24] therein. Therefore, the spectroscopic energy range of
0 ≲ eVb ≲ 200 meV should correspond to states in the bulk
band gap. Thus, we can conclude that the increased LDOS at
the step edges in Figure 3f–i must belong to states in the bulk

Figure 3. Differential conductance maps close to a step edge of the
(Bi0.16Sb0.84)2Te3 film. a) STM topography scan of the investigated area,
including a step edge between a 3QL terrace and a 4QL terrace. b–i) Corre-
sponding spectroscopic dI∕dV maps, recorded in constant current mode
at different sample bias voltages between 1 V and 50 mV. A pronounced
feature in the dI∕dV signal along the step edge at voltages below 220 mV
indicates an increased LDOS at the step edge, thus an edge state.

band gap. The fact that these features disappear at a somewhat
higher energy (about 220 meV) than expected may be explained
by a thickness-dependent bulk band gap[9] which might easily in-
crease by about 20 meV for thin films of 3–4 QL.
Characteristic LDOS signals at step edges as observed here are

also found in other systems and have been interpreted as non-
trivial QSH edge states.[28–32] Following this argumentation, we
might conclude from Figure 3 that the 3 QL (Bi0.16Sb0.84)2Te3 film
constitutes a QSH phase, while the 4 QL film is topologically triv-
ial (or vice versa), leading to a 1D topological edge state at the
boundary between the two. It must be noted, however, that from
spectroscopic data alone it is not clear whether observed edge
states are in fact topologically nontrivial. Therefore, it is neces-
sary to explicitly prove the topological nature of spectroscopically
observed edge states. Oneway to achieve this is themeasurement
of the electrical conductance in these edge states. If an edge state
is topological, then electrons injected into it should be protected
from scattering and therefore travel ballistically along the edge,
even if it is rugged.[33] This will lead to conductances that are sub-
stantially larger than the reference conductance in the 2D interior
(i.e., on the terraces) of the film.
In the remainder of the paper, we will follow this approach,

using a four-tip STM with which ballistic transport signatures
in edge channels can in principle be detected by spatially re-
solved resistance measurements.[34–37] As mentioned above, in
the present case the challenge is to precisely position our STM
tips as close as possible to the rugged step edges of the MBE-
grown wedge-like (Bi0.16Sb0.84)2Te3 film. With the methodology
described in the section Experiments, we have been able to
overcome this difficulty and have performed distance-dependent
four-point resistance measurements in close vicinity to the
step edges.
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Figure 4. Four-point resistance measurements along a step edge. a) STM topography image of the investigated (Bi0.16Sb0.84)2Te3 film. The image frame
corresponds to the blue square in Figure 2a. White symbols indicate the positions of the current-injecting tips (top and bottom) and the fixed voltage-
probing tip. The green symbol indicates the mobile voltage-probing tip. All tips are contacting the step edge between the 2 QL terrace and the Si(111)
substrate. b) Outline of the step edges with terrace sheet conductivities indicated.[22] Fixed and mobile tip positions are indicated by blue and green
open circles, respectively. c) Measured four-point resistance R4P2D (green circles) versus position along the step edge between points A and B, exhibiting
an approximately linear distance dependence (≥100 kΩ µm−1), in comparison with the result of a finite-element simulation without a highly conductive
edge channel (red curve). d) Color plot of the electric potential 𝜙(x, y) from the finite-element simulation. The step edges are highlighted as black lines.
The white tip symbol indicates the fixed voltage-probing tip at A, the red symbol the mobile voltage-probing tip at the first of the green data points in
(c). The trajectory of the mobile voltage-probing tip is indicated by the red line.

We add one last note regarding the connection between trans-
port measurements and the spectroscopic measurements. Since
a QSH edge state, if it exists, will occur throughout the whole
TSS band gap (cf., Figure 1c), it will also be detectable in spectro-
scopic measurements away from the Fermi level, for example at
50 meV above EF, although the transport measurement is always
carried out at EF.

3.2. Step-Edge Conductance by Four-Point Resistance
Measurements along a Step Edge

Principally, there are several four-pointmeasurement geometries
in which ballistic edge channels can be identified. In this sec-
tion, we use a geometry in which all four tips are lined up along
a step edge to search for a possible ballistic conductance chan-
nel at the boundary of a 2 QL (Bi0.16Sb0.84)2Te3 film to the bare
Si(111) substrate. We note that the step edge does not need to be
straight, as edge states of a QSH insulator are expected to retract

from disordered edges into the 2D interior with a larger degree
of straightness.[33] The STM image in Figure 4a shows the corre-
sponding step edge and a representative measurement configu-
ration of the four tips (white and green symbols). The precise se-
quence of measurement positions of the mobile voltage-probing
tip is shown Figure 4b (green open circles). In Figure 4c, themea-
sured four-point resistances are plotted versus the position of the
mobile voltage-probing tip along the curved profile line (green
dots). We observe a kink at the profile line position about 1 µm,
with different linear slopes to left and right of the kink.
Already a straightforward qualitative analysis reveals that

the data in Figure 4c are not consistent with the existence of
a ballistic edge channel along the step edge. Since there can
be no potential drop in a ballistic channel,[38] its four-point
resistance should be independent of the distance between the
voltage probes. This clearly is in contradiction with themeasured
data. Moreover, also the magnitude of the observed four-point
resistance is at odds with what would be anticipated for a ballistic
conductance channel. For a single, that is, not spin-degenerate,
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ballistic channel, one expects four-point resistances between
R4P
b = 0 and R4P

b = h∕e2 = 25.8 kΩ for the limiting cases of
noninvasive and invasive voltage probes, respectively.[34,36] The
significantly higher four-point resistances that we measure in
our experiment (≥ 100 kΩ μm−1) strongly suggest that there is
no ballistic conductance channel at the step edge in Figure 4a.
It should be noted, however, that a QSH phase could in prin-

ciple also exhibit a behavior that is devoid of ballistic transport
signatures. This would be the case if the Fermi level were not in
the TSS band gap or if inelastic scattering were present. In the
first case, interband scattering could occur between the 1D edge
channel and the states in the 2D interior, as shown in Figure 1c.
As a result, the conductance in the edge channel would be re-
duced. Because the Fermi level position in the bands of the 2D
film interior would at the same time increase the 2D sheet con-
ductivity, an existing ballistic conductance channel at the edge
could in fact be masked in our transport experiments, and with it
a QSH phase in the film. However, because of the large TSS band
gapΔ2QL ≈ 250 meV,[9,19] which opens approximately symmetric
with respect to the TSS Dirac point, and the Fermi level posi-
tion EF ≈ 50 meV above the TSS Dirac point[22] (with a spread
of about 25 meV at room temperature), the Fermi level will be
located within the TSS band gap and thus inter-band scattering
seems very unlikely here. Regarding the second case, it should be
noted that inelastic scattering, for example, by electron–phonon
interaction, is possible in principle, even if elastic backscatter-
ing of the spin-polarized QSH edge states is excluded by time-
reversal symmetry. Obviously, inelastic scattering could increase
the resistance of the edge channel beyond what is expected for
the ballistic case. The strength of this effect depends on the par-
ticular system, but has not yet been quantified at conditions close
to room temperature. Usually, the opposite behavior is observed,
namely that the resistance decreases as a function of temperature
due to thermal activation of transport in 2D bulk states.[8,39] How-
ever, in our experiment, bulk transport is strongly suppressed at
room temperature (in particular for the 2 QL terrace), which im-
poses stringent conditions on the inelastic scattering rate that
would be required to obtain a QSH edge state with a resistiv-
ity of up to ≥ 100 kΩ μm−1. Therefore, the absence of a QSH
edge state remains the most convincing explanation for the ex-
perimental data.
Having all but ruled out the presence of ballistic conductance

channels at the edge of the 2 QL film, we still need to explain the
distinctive behavior of the four-point resistance in Figure 4c. To
this end, we performed a finite-element simulation of a classical
boundary value problem, taking into account the precise shape
of the terraces from Figure 4a, the exact positions of the current
injection points (at which the potential in the calculation was set
to +0.5 and −0.5 V), and the known sheet conductivities[22] of
both the 2 QL (Bi0.16Sb0.84)2Te3 film and the Si(111) substrate,
𝜎2QL = 1.3 µS□−1 and 𝜎Si(111) = 1 nS□−1. The resultant distribu-
tion of the electric potential 𝜙 in the film surface is displayed in
Figure 4d. From this calculated potential, we extracted the four-
point resistance R4P

2D = 𝛿𝜙∕Imeasured between the fixed and the
mobile voltage-probing tips at different positions along the step
edge (red line in Figure 4d and red curve in Figure 4c), where
𝛿𝜙 is the calculated potential difference between points at which
voltage-probing tips are placed and I is the current. We note
the excellent agreement of the experimental and simulated four-

point resistances (without any scaling factor). Even the kink in
the four-point resistance around 1 µmalong the step edge is faith-
fully reproduced in the simulation. This implies that this feature
originates from the specific shape of the step edge, and does not
require any change in local conductivities within the film for its
explanation, as would be instigated, for example, by a ballistic
conductance channel at the edge of aQSHphase. All the evidence
put together, we thus unequivocally conclude that the present
2 QL film of (Bi0.16Sb0.84)2Te3 does not exhibit ballistic edge chan-
nels and, since the neighboring Si substrate is definitely topolog-
ically trivial, also does not represent a QSH phase either.
An analysis of the band structures of both Bi2Te3 and Sb2Te3 in

the thin-film limit with many-body perturbation theory in the so-
called GW approximation has revealed that 2 QL films of Bi2Te3
are expected to be a QSH insulator, with a TSS band gap of
0.15 eV.[19] With a gap of this size, the edge channels should be
observable in experiment, if indeed the Fermi level is in the TSS
band gap. The fact that we do not observe this QSH phase in
our transport experiment does not necessarily contradict this re-
sult, because in the same calculation 2 QL films of Sb2Te3 are
found to be topologically trivial,[19] and it is not a priori clear how
the mixed compound (Bi0.16Sb0.84)2Te3 would behave, although
one might expect it to resemble Sb2Te3 more closely than Bi2Te3.
Therefore, we have also carried out nanoscale four-point trans-
port experiments on 2 QL films of Bi2Te3 in order to search for
a ballistic conductance channel along the edges. Because of the
intrinsic n doping of this material, however, this requires to shift
the Fermi level from the 2D conduction band into the TSS band
gap. Since our samples are MBE-grown on silicon-on-insulator
substrates, this can principally be achieved by gating.[22] Unfortu-
nately, however, no change of the sheet conductivity upon gating
up to 200 V was observed in initial experiments, showing that
our gating capability is not sufficient to move the Fermi level
into the TSS band gap of Bi2Te3. As a result, the terrace con-
ductivity of this sample was significantly higher (≈ 200 µS□−1)
than that of (Bi0.16Sb0.84)2Te3, (1.3 µS□−1), such that we were
unable to distinguish any edge conduction. However, this does
not mean that the Bi2Te3 films are topologically trivial. It just il-
lustrates our inability to suppress their 2D sheet conductivities
sufficiently.

3.3. Step-Edge Conductance by Four-Point Resistance
Measurements across a Step Edge

Although the results of the analysis in the previous section are
unambiguous, one may ask how critical it is to bring the tips as
close as possible to the step edge (and thus also to the edge state)
in order not to miss the ballistic edge channel whose width is
difficult to gauge. In this section, we therefore explore whether a
tip configuration with less stringent requirements can be used
to identify the presence or absence of a ballistic edge channel
as well. Specifically, we position three tips moderately close and
roughly parallel to a step edge, while the fourth, that is, one of
the voltage-probing tips, is moved through a sequence of mea-
surement positions along a line that runs approximately perpen-
dicular to the step edge. We apply this measurement geometry
to the same sample as before, but we focus on the step edge be-
tween the 2 QL and 3 QL films. Since we have already established
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Figure 5. Four-point resistance measurements perpendicular to a step edge. a) STM topography image of the investigated (Bi0.16Sb0.84)2Te3 film. White
symbols indicate the positions of the current-injecting tips (top and bottom) and the fixed voltage-probing tip. The red tip symbol indicates the mobile
voltage-probing tip. While the static STM tips are placed along the step edge between the 3 QL and 2 QL terraces, the mobile voltage-probing tip is
moved perpendicularly to the step edge. b) Outline of the step edges with terrace sheet conductivities indicated.[22] Fixed tip positions are indicated by
blue, mobile tip positions by red and green open circles. c) Measured four-point resistance R4P2D (red and green circles) versus position, in comparison
with the result of a finite-element simulation without a highly conductive edge channel (red and green curves). Characteristic positions along the profile
line are marked. d) Color plot of the electric potential 𝜙(x, y) from the finite-element simulation without highly conductive channel. The step edges are
highlighted as black lines. The white symbol indicates the fixed voltage-probing tip, the green/red symbol the mobile voltage-probing tip at the first of
the red data points in (c). The trajectories of the mobile voltage-probing tips are indicated by the green/red lines.

that the 2 QL (Bi0.16Sb0.84)2Te3 film is trivial, we can thus analyze
the topological properties of the 3 QL film.
Figure 5a shows an STM image of the boundary region be-

tween 2 QL and 3 QL terraces of the sample. The two current-
injecting tips and the immobile voltage-probing tip are placed
on the 3 QL terrace along the vertical dotted line, at a dis-
tance of ≈ 200 nm from the step edge to the 2 QL terrace. The
measurement positions of themobile tip are indicated by red and
green symbols in Figure 5b for two measurement series, which
are slightly offset against each other. As before, we simulate
the transport experiment by solving the corresponding boundary
value problem with the known sheet conductivities.
The red and green curves in Figure 5c show the calculated four-

point resistances along the two horizontal lines in Figure 5d. The
agreement between the measured four-point resistances and the
finite-element simulation is again exceptionally good, including
details such as the maxima at ≈ 0.5 µm, the dip in the green data
set at ≈ 0.15 µm, and the vertical offset between red and green
data sets.

Whether the presence of a ballistic edge channel will mod-
ify the measured four-point resistances depends on the ratio of
the terrace sheet conductivity 𝜎2D to the total contact resistance
Rb = h∕e2 = 25.8 kΩ involved in entering and leaving the ballistic
conductance channel. If 1∕𝜎2D ≫ Rb, the ballistic channel acts as
a perfect conductor. Whenever this strong condition applies, the
current path through the ballistic channel is strongly preferred
over the current path through the plane, resulting in a signifi-
cantly modified four-point resistance. In the opposite case, the
contact resistance Rb will impede the current from entering the
ballistic channel.
In the present case, the above-mentioned strong condition is

not fulfilled, since 1∕𝜎3QL ≈ 24 kΩ□−1 is of the same order asRb.
However, there is a weaker condition which indicates that a sig-
nificant part of the current flows through the ballistic channel.
To illustrate this, consider a current injection into the plane at
positions close to the potential ballistic edge channel (as in Fig-
ure 5a). In this case, the currents through the ballistic channel
and the plane can be approximated by a parallel resistor model
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in which the resistance through the plane is given by its two-
point resistanceR2P

2D. If the weaker conditionR
2P
2D > Rb is fulfilled,

the parallel resistor model tells us that a large part of the current
flows through the ballistic channel, which influences in turn the
measured four-point resistances.
The two-point resistance in a plane is given by[10]

R2P
2D = 1

𝜋𝜎2D
ln

(Δx − R
R

)
(1)

where Δx is the distance between the current-injecting tips and
R their contact radius. Considering the case in Figure 5a with
Δx ≈ 1.7 µmandR ≈ 10 nm, the two-point resistance on the 3QL
terrace results as R2P

2D ≈ 40 kΩ. The actual two-point resistance is
expected to be nearly twice this value, if—as in the present case—
the tips are close to a terrace of low conductivity and thus only one
half-plane contributes to the two-point sheet conductance. Thus,
in our case the condition R2P

2D ≈ 80 kΩ > Rb = 25.8 kΩ is fulfilled
and a significant modification of the measured four-point resis-
tance is expected if a ballistic channel were present. The exper-
imental data are therefore not consistent with the presence of
a highly conductive edge channel at the step edge between the
2 QL and the 3 QL films. We note that according to the above ar-
gument, the identification of 1D ballistic conductance channels
is easier if 𝜎2D is small—for this reason we have deliberately cho-
sen a (BixSb1−x)2Te3 compound that has its Fermi level in the TSS
band gap, such that the charge carrier density and hence the back-
ground conductivity on the terraces is as low as possible.
However, a note of caution is in order: the TSS band gap of

the 3 QL film (Δ3QL ≈ 60 meV) is much smaller than that of
the 2 QL film.[9,19] Because the estimated Fermi level position
of EF ≈ ±50 meV with respect to the TSS Dirac point[22] is in
the same range as this band gap, inter-band scattering between
the ballistic edge channel and the 2D interior of the film can-
not be excluded with certainty. If the Fermi level were indeed
located in the 2D conduction band, the inter-band scattering
would reduce the edge state conductance; at the same time, the
sheet conductivity of the 2D interior of the film would increase,
making it difficult to identify signatures of the ballistic transport
in our transport data. For the 3 QL (Bi0.16Sb0.84)2Te3 film we can
therefore conclude that, if the Fermi level is in gap, the filmmust
be topologically trivial. If, however, the Fermi level is located in
the 2D conduction band, no definite conclusion regarding the
existence of a QSH phase can be reached.

3.4. Analytical Model of the Four-Point Resistance along an Edge
between Half-Planes with Distinct Sheet Conductivities

The excellent agreement between the experimental data and the
simulation in Figures 4c and 5c encourages a further analysis of
specific features in the four-point resistance profiles. To this end,
we calculated such profiles analytically for two generic situations,
with and without the presence of a highly conductive edge chan-
nel. As wewill see in this section, the four-point resistances in the
two limiting situations differ strongly. In many cases, these qual-
itative differences will allow the classification of films as topo-
logically non-trivial by a straightforward visual inspection of the
measured distance-dependent four-point resistance profiles. We

note that the calculations in this section assume the validity of
the condition 1∕𝜎2D ≫ Rb.
To calculate the four point resistance R4P

2D = 𝛿𝜙∕I, we analyti-
cally determined the potential distribution 𝜙(x, y) due to the sta-
tionary current distribution, from which the potential difference
𝛿𝜙 between arbitrary positions of the two voltage-probing tips
was obtained. We considered the following geometry (Figure 6a):
The two current-injecting tips were placed at (−x0, y0) and (x0, y0).
We assumed constant sheet conductivities 𝜎1 for y > 0 and 𝜎2
for y < 0 (for simplicity, we omit the subscript “2D” from now
on). Applied to the present problem, this corresponds to a step
between two terraces of different heights at y = 0. Within this
model, we considered two cases: If the step at y = 0 is topolog-
ically trivial, then the system is fully described by the two finite
sheet conductivities, for which we assumed that 𝜎1 > 𝜎2 (for a
stepped TI film this would mean that the film thickness for y > 0
is higher). If on the other hand one of the films is in a QSH state,
a ballistic conductance channel will run along the edge at y = 0;
we accommodated this case into our model by letting 𝜎2 → ∞
and restricting our solution to the half-plane y > 0.
The calculated potentials (see Methods Section for the deriva-

tion of the corresponding equations) are plotted in Figure 6b,c
for two cases, one of them modeling the presence of a ballis-
tic edge channel (Figure 6b), the other its absence (Figure 6c).
Turning to Figure 6b first, we observe that the potential is dis-
torted from the simple dipolar distribution that would be ob-
served if the current were injected into an infinite 2D plane. The
profiles perpendicular to the edge which are displayed in the
bottom part of Figure 6b reveal a strong drop of the poten-
tial toward the edge and in particular a near-constant potential
𝜙1(x, y) ≈ 0 along the edge for y → 0, to achieve continuity with
𝜙2(x, y) = 0 for y < 0. Since constant potential indicates low resis-
tance and thus large current densities, Figure 6b reveals that the
injected current preferably flows through the ballistic edge chan-
nel.
In contrast, the situation without the ballistic edge channel,

but with a poorly conducting half-plane y < 0, leads to a very dif-
ferent distribution of the potential, as shown in Figure 6c for the
specific case 𝜎2 = 0.01𝜎1. In Figure 6c, the strong variation with
x of the potential 𝜙1(x, y) for y → 0 indicates a large resistance
along the edge. As a consequence, the current is not only inhib-
ited from entering the poorly conducting half-plane, but is sup-
pressed already for y > 0 while y approaches zero from above. We
note that𝜙2 drops again for increasingly negative y away from the
edge. However, the “resistance barrier” on both sides of the edge
means that the actual current density there will be very small.
The potential 𝜙1(y → 0) does not vanish, as it was in the case for
a perfectly conducting channel at y = 0.
When we compare the two situations in Figure 6b,c, it be-

comes clear that all experimental data reported in this paper re-
semble the situation in Figure 6c. On the one hand, this con-
firms that no indications of a ballistic edge channel are present
for (Bi0.16Sb0.84)2Te3. On the other hand, this also shows that the
behavior of the analytical solution of a straight step edge goes a
long way to providing a qualitative guide to the existence or non-
existence of a ballistic edge channel and therefore a QSH phase,
even in cases when the actual step edge is far from straight. We
note in this context that for strongly defective step edges, the edge
states of a QSH insulator are expected to retract away from the
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Figure 6. Analytical solution for the electric potential 𝜙(x, y) close to the edge between two half-planes. a) Geometry of the boundary value problem. Two
half-planes with sheet conductivites 𝜎1 (for y > 0) and 𝜎2 (for y < 0) meet at y = 0. A current +I is injected at (x0, y0) and withdrawn (−I) at (−x0, y0). If
𝜎2 → ∞, this geometry emulates the existence of a one-dimensional ballistic conductance channel at y = 0 (magenta line). Positions of image current
sources are indicated by I′ (see Methods Section for more details). b) Color map of 𝜙(x, y) for 𝜎2 → ∞. For y < 0, the potential is zero. Profiles for
x = const. are shown at the bottom of the panel: for y → 0, the potential increases, reaches a maximum and falls to zero at the ballistic conductance
channel. c) Color map and profiles of 𝜙(x, y) for 𝜎2 = 0.01𝜎1, emulating the case of a step in the 2D sheet conductivity at y = 0. The potential tends to
increase toward this step, indicating the existence of a resistance barrier there.

step edge into the 2D interior, where the ballistic channel may
preserve a larger degree of straightness.[33]

There is, however, a further subtlety regarding modeling of
QSH-derived ballistic edge channels by a terrace with infinite
conductivity (𝜎2 → ∞). In the QSH phase, the terrace and the
edge state are decoupled, which means that current injection
from the 2D terrace into the ballistic edge channel can only
be realized through scattering processes. This gives rise to an
effective contact resistance, which we, however, neglected in our
analytical model on which the results of Figure 6b are based.
But we expect that this effective contact resistance is small, for
several reasons: First, the contact area is very large (it extends
along the whole length of the terrace edge). Second, the interface
between the 2D terrace and the edge state occurs within the same
material and crystal structure, ruling out any interfacial barrier
due to a material- or structure-based mismatch. And third, the
substantial LDOS in the edge state, which is much larger than
the LDOS in the terrace, enhances terrace-to-edge scattering over
the terrace-to-terrace scattering. All of this will minimize the con-
tact resistance between the 2D terrace and QSH edge channel.
Moreover, due to the inevitable gap inversion between neighbor-
ing terraces that necessarily accompanies any QSH edge state,
a considerable terrace-to-terrace contact resistance is expected.
Thus, a high terrace-to-terrace contact resistance in connection
with a small terrace-to-edge contact resistance allows the current
to enter the ballistic edge channel effectively, permitting us to ob-
serve a possible QSH state as a highly conductive edge channel in
our measurements. Note that this argument does not imply that
the ballistic conductance in the edge channel is heavily modified

by terrace-to-edge coupling. From the perspective of the edge
channel, the 2D states on both terraces only have a negligible
LDOS near the edge. Hence, for a charge carrier in the QSH
edge channel, the terrace-to-edge coupling is rather weak, and a
significant effect on its ballistic conductance is not expected.

4. Conclusion

Employing the Jülich multi-tip STM, we performed nanoscale
charge transport measurements in the vicinity of single
quintuple-layer steps of TI films. Due to the precise posi-
tioning and navigation capabilities of our STM tips down to the
nanoscale, we were able to spatially resolve four-point resistances
at the surface of the TI film. Our local conductance data proved
to be informative with respect to the presence or absence of
ballistic edge channels that would indicate a QSH phase. In this
sense, we achieved our goal to close the research gap between the
spectroscopic characterization with scanning probe methods at
the nanometer scale on the one hand, and conventional transport
experiments at the micrometer scale on the other, even in the
face of a nonideal nanoscale sample geometry (rugged edges).
From our experimental data, we could conclude that no

ballistic edge channels were present in our sample for 2 QL
films, despite a gap opening in the TSS of the underlying 3D
TI, which manifested itself in an exponentially decreasing sheet
conductivity for films with thicknesses below 5 QL and despite
an edge state signature in the LDOS. Instead, we found that
the measured four-point resistances agree quantitatively with
results from finite-element simulations based on, first, the
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actually observed intricate nanoscale sample geometry and,
second, measured conductivities on the TI terraces. We also
found qualitative agreement with an analytical solution of the
Laplace equation in the idealized geometry of a straight edge at
which no ballistic conductance channel is present.
The absence of ballistic edge channels implies a topologically

trivial phase for a film thickness of 2 QL, for which EF is clearly
located in the TSS band gap. In contrast, for the film thickness
of 3 QL, the absence of ballistic edge channels principally allows
two interpretations: first, the absence of a QSH phase, or sec-
ond, a QSH phase with topologically protected edge channels
while EF is located in the 2D conduction band. The latter situa-
tionwould result in an enhanced terrace conductivity, while at the
same time enabling scattering from the edge channel into bands
of the 2D interior (see Figure 1c), thereby undermining the bal-
listic transport along the edges. We note, however, that a Fermi
energy EF in the 2D conduction band appears unlikely, because
the terrace conductivity was found to be rather small for 3 QL
films. Thus, we interpret the increased LDOS observed in dI∕dV
maps at the step edges as originating from trivial edge states with
a conductivity that is not higher than that of the surrounding ter-
races. In summary, we conclude that the investigated compound
(Bi0.16Sb0.84)2Te3 does not exhibit a QSH phase for 2 QL and prob-
ably also 3 QL films, because ballistic edge states, being the hall-
mark of a QSH phase, are not present. This is in agreement with
theoretical predictions for the binary compound Sb2Te3 that is
close to the stoichiometry of our present sample.[19]

On a more general note, we were able to demonstrate that
STM-based multi-tip transport experiments are a powerful and
generic method to search for ballistic edge channels. But we have
also seen that firm conclusions could only be drawn with the pro-
vison that the Fermi level is located in the TSS band gap. This
touches upon a problemof transportmeasurement in general, re-
gardless of the methodology: if the bulk conductivity is too large,
then it becomes difficult or impossible to distinguish the ballistic
transport in the 1D edge channels from the transport in the 2D
film interior. In this respect, theMBE-grown (BixSb1−x)2Te3 films
turned out to be problematic, because they require a certain stoi-
chiometry to put the Fermi level into the bulk and TSS gap, but at
the same time this stoichiometry influences the topological prop-
erties. In the near future, we therefore plan to apply the method-
ology of the present paper to exfoliated films, for which uninten-
tional doping is expected to be less of a problem. Promisingmate-
rials in this context aremagnetic topological insulators, which ex-
hibit a quantum anomalous Hall state, and van derWaals materi-
als, such as theQSH insulatorWTe2, which allow an effective gate
tuning. Moreover, low-temperature measurements could also re-
veal the impact of inelastic scattering on the transport properties
of the edge channels. Finally we note that our technique is also
compatible with the measurement of spin-polarized transport, if
magnetic tips are used.[26] This should finally bring us closer to
the long-term goal of spin-polarized measurements of ballistic
conductance channels with contacts that can be freely positioned
on the nanoscale.

5. Methods Section
To interpret the experimental data, calculations of the electric poten-

tial distribution were performed for a given current injection geometry,

fromwhich the four-point resistance between any two points in the sample
plane can easily be determined. Two approaches were taken.

First, finite-element simulations were performed that took into account
the measured terrace/step topography and the sheet conductivities on
the respective terraces.[22] These simulations were carried out with the
current flow module of the program OPERA 3D by Dassault Systèmes.[40]

To build the simulation model, the precise step structure of the sample
was first mapped into the simulation plane. Next, the simulation plane
was extruded into the third dimension, using a uniform thickness of
25 nm of the simulation slab; in this process, the distinct heights of the
terraces were not taken into account. Finally, each terrace was assigned
a specific sheet conductivity. Since the simulation model is 3D, the sheet
conductivity was distributed evenly across the thickness of the simulation
slab. The maximum size of mesh elements in the simulation was set to
20 nm. The excellent agreement of the measured data with the simulation
results justified this simplified approach.

Second, for the simple geometry of a conducting half-plane next to a
straight edge channel with infinite conductivity, or next to a half-plane with
negligible conductivity, the boundary value problem for a stationary cur-
rent was solved analytically.[41] Following Ohm’s law, the 3D current den-
sity j is given by j = 𝜎̂E, where E is the electric field and 𝜎̂ is the conductivity
tensor, which was assumed to be diagonal and isotropic. With E = −∇𝜙,
one obtains

Δ𝜙 = −
∇ ⋅ j
𝜎

(2)

This is a Poisson equation for the divergence ∇ ⋅ j of the current density
in full analogy to the common Poisson equation Δ𝜙 = −𝜌∕𝜖0 for a charge
density 𝜌.

In a first step, a point-like current injection at r0 ≡ 0 into
a plane is considered with constant 𝜎 everywhere.[42] Then,
∇ ⋅ j(r) = 0 for all r ≠ 0, and one has to solve the Laplace equa-
tion Δ𝜙(r) = 0 for r ≠ 0. Because of the symmetry of the problem, it is
expedient to use cylindrical coordinates (𝜚,𝜑, z) in which the Laplace

operator becomes Δ = 1
𝜚

𝜕

𝜕𝜚
𝜚

𝜕

𝜕𝜚
+ 1

𝜚2
𝜕2

𝜕𝜑2
+ 𝜕2

𝜕z2
. The second term van-

ishes for problems with cylindrical symmetry, while the third term can be
neglected for 2D problems. Thus, for the present problem only the first
term remains, and 𝜙(r) = 𝜙(𝜚) with 𝜚 = |r| = √

x2 + y2. One therefore
has

1
𝜚

𝜕

𝜕𝜚
𝜚
𝜕

𝜕𝜚
𝜙(𝜚) = 0 (3)

with 𝜚 > 0. Integrating twice, one obtains

𝜙(𝜚) = c1 ln 𝜚 + c2 (4)

where c1 and c2 are integration constants. Since the potential is defined
only up to an additive constant, one can set c2 = 0. c1 follows from the
size of the injected current at 𝜚 = 0. Placing a circle of radius R around
the injection point (R can be taken as the contact radius of the tip) and
integrating the now 2D current density j through this ring, one obtains

I = ∮L
(j ⋅ n)dL = ∫

2𝜋

0
jn(R)Rd𝜑 = −2𝜋𝜎c1 (5)

where the circular symmetry and jn = −𝜎 𝜕𝜙

𝜕𝜚
(R) = c1

R
(Ohm’s law and

Equation (4)) has been used. Here, n is the outer normal unit vector of
the circle, and 𝜑 denotes the angle along its circumference L. Note that
unlike in Equation (2), 𝜎 in Equation (5) is the 2D sheet conductivity, mea-
sured in S□−1. One thus finally finds[42]

𝜙(𝜚) = − I
2𝜋𝜎

ln 𝜚 = − I
2𝜋𝜎

ln(
√

x2 + y2) = − I
4𝜋𝜎

ln(x2 + y2) (6)
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for the potential due to a single point-like current source+I at 𝜚 = 0. In this
case, the current −I is drained on a circular ring at 𝜚 → ∞. In our experi-
ment, however, the current drain −I occurs at the position of the second
current-injecting tip. Hence, the radial current density distributions of both
tips must be added to yield the total current density between the two tips.
This corresponds to the summation of the potentials from these two tips
to yield

𝜙(x, y) = − I
4𝜋𝜎

ln
(
(x − x0)

2 + (y − y0)
2

(x + x0)2 + (y − y0)2

)
(7)

if +I is injected at (x0, y0) and −I is drained at (−x0, y0) and the sheet con-
ductivity 𝜎 is constant everywhere. Since the total current I is related to
the applied voltage U by I = U∕R2P2D, it follows that 𝜆 ≡ I∕𝜎 = U(𝜌2D∕R

2P
2D),

where 𝜌2D = 𝜎−1 and the ratio in the brackets is given by Equation (1),
yielding 𝜆 = U𝜋[ln(Δx−R

R
)]−1.

The situation with a boundary at y = 0 at which 𝜎 changes, as shown
in Figure 6a, was then considered. For y > 0, the potential 𝜙1 can be cal-
culated by additionally injecting an image current +I′ at (−x0,−y0) and
withdrawing −I′ at (x0,−y0).[41] For y < 0, the potential 𝜙2 can be calcu-
latedwithout additional image currents, but with the original currents±I at
the injection points replaced by ±I′′, in order to account for the screening
influence of the boundary at y = 0.[41] I′ and I′′ follow from the boundary
conditions at the boundary y = 0 between to two half-planes. Specifically,
because the current across the boundary must be continuous (no sources
or drains in the boundary), one finds 𝜎1Ey,1 = 𝜎2Ey,2 for the perpendic-
ular electric field. Since the tangential electric field is continuous at any
interface, Ex,1 = Ex,2 holds. From these two conditions, one obtains 𝜆′ =
I′∕𝜎2 = −𝜆(𝜎1 − 𝜎2)∕(𝜎1 + 𝜎2) and 𝜆′′ = I′′∕𝜎1 = 2𝜆𝜎1∕(𝜎1 + 𝜎2), where
𝜆 = I∕𝜎1. The potential for y > 0 thus becomes

𝜙1(x, y) = − I
4𝜋𝜎1

[
ln
(
(x − x0)

2 + (y − y0)
2

(x + x0)2 + (y − y0)2

)

+
𝜎1 − 𝜎2

𝜎1 + 𝜎2
ln
(
(x − x0)

2 + (y + y0)
2

(x + x0)2 + (y + y0)2

)]
(8)

while for y < 0

𝜙2(x, y) = − I
2𝜋(𝜎1 + 𝜎2)

ln
(
(x − x0)

2 + (y − y0)
2

(x + x0)2 + (y − y0)2

)
(9)

holds. In the limit 𝜎2 → ∞, one obtains

𝜙1(x, y) = − I
4𝜋𝜎1

ln
(
[(x − x0)

2 + (y− y0)
2][(x + x0)

2 + (y + y0)
2]

[(x + x0)2 + (y− y0)2][(x − x0)2 + (y + y0)2]

)

(10)

and

𝜙2(x, y) = 0, (11)

which corresponds to the case of a straight edge channel at y = 0 with
infinite conductivity.

Equation (7) can be written down immediately with the help of the
Green’s function G(r, r′) that fulfills the Poisson equation

ΔG(r, r′) = − I
𝜎
𝛿(r − r′). (12)

In terms of the Green’s function, the potential in an m-dimensional vol-
ume V{m} is given by[43]

𝜙(r) = ∫V{m}
G(r, r′)

∇′ ⋅ j(r′)
I

dmr′

+ 𝜎

I ∮A{m−1}

[
G(r, r′)

𝜕𝜙(r′)
𝜕n′

− 𝜙(r′)
𝜕G(r, r′)

𝜕n′

]
dm−1r′ (13)

where the second integral extends over the surface A{m−1} surrounding the

volume V{m}. If this surface is located at infinity, then both 𝜙(r′) and 𝜕𝜙(r′)
𝜕n′

vanish and with them the surface integral, the latter under the condition

that 𝜙(r′) and 𝜕𝜙(r′)
𝜕n′

vanish rapidly enough for |r′| → ∞; in the present
context thismeans that the length increase of the integration contourmust
be compensated by a sufficient decrease of the integrand. In two dimen-
sions, the Green’s function of the Laplace operator in Equation (12) is
given by[43]

G(r, r′) = − I
2𝜋𝜎

ln(|r − r′|) (14)

The introduction of the point-like current sources at r+ and r−

∇′ ⋅ j(r′) = I𝛿(r′ − r+) − I𝛿(r′ − r−) (15)

into Equation (13) yields

𝜙(r) = − I
2𝜋𝜎

ln
(|r − r+||r − r−|

)
(16)

which is identical with Equation (7), if r+ = (x0, y0) and r− = (−x0, y0).
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